3,176 research outputs found

    Electromagnetic selection rules in the triangular alpha-cluster model of 12C

    Full text link
    After recapitulating the procedure to find the bands and the states occurring in the D3h\mathcal{D}_{3h} alpha-cluster model of 12^{12}C in which the clusters are placed at the vertexes of an equilateral triangle, we obtain the selection rules for electromagnetic transitions. While the alpha cluster structure leads to the cancellation of E1 transitions, the approximations carried out in deriving the roto-vibrational hamiltonian lead to the disappearance of M1 transitions. Furthermore, although in general the lowest active modes are E2, E3, â‹Ż\cdots and M2, M3, â‹Ż\cdots, the cancellation of M2, M3 and M5 transitions between certain bands also occurs, as a result of the application of group theoretical techniques drawn from molecular physics. These implications can be very relevant for the spectroscopic analysis of Îł\gamma-ray spectra of 12^{12}C

    Center clusters in the Yang-Mills vacuum

    Full text link
    Properties of local Polyakov loops for SU(2) and SU(3) lattice gauge theory at finite temperature are analyzed. We show that spatial clusters can be identified where the local Polyakov loops have values close to the same center element. For a suitable definition of these clusters the deconfinement transition can be characterized by the onset of percolation in one of the center sectors. The analysis is repeated for different resolution scales of the lattice and we argue that the center clusters have a continuum limit.Comment: Table added. Final version to appear in JHE

    Application of interferential correlation of spectrum to the detection of atmospheric pollutants

    Get PDF
    The general correlation principles for spectra and spectra derivatives are studied by using the Fourier transform of the spectral distribution of energy from a source illuminating a double beam interferometer with transverse splitting by dividing luminance. In this correlation technique, the use of such an interferometer has the advantage of greater luminosity as compared with a slit spectrometer. However, the correlation example indicates that it is necessary to adapt the correlator to the particular case considered, in order to obtain the best gain in the signal to noise ratio. In the case of sulfur dioxide detection, a very simple mounting which could be used in some interesting industrial applications was developed. This mounting can be used each time that the substance to be analyzed has a quasi-periodic absorption spectrum: in particular this is often the case with absorption spectra of gases, and a mounting identical to the one described for sulfur dioxide proved to be effective in the detection of nitrogen oxides

    A Geometrical Interpretation of Hyperscaling Breaking in the Ising Model

    Get PDF
    In random percolation one finds that the mean field regime above the upper critical dimension can simply be explained through the coexistence of infinite percolating clusters at the critical point. Because of the mapping between percolation and critical behaviour in the Ising model, one might check whether the breakdown of hyperscaling in the Ising model can also be intepreted as due to an infinite multiplicity of percolating Fortuin-Kasteleyn clusters at the critical temperature T_c. Preliminary results suggest that the scenario is much more involved than expected due to the fact that the percolation variables behave differently on the two sides of T_c.Comment: Lattice2002(spin

    An NMR Analog of the Quantum Disentanglement Eraser

    Get PDF
    We report the implementation of a three-spin quantum disentanglement eraser on a liquid-state NMR quantum information processor. A key feature of this experiment was its use of pulsed magnetic field gradients to mimic projective measurements. This ability is an important step towards the development of an experimentally controllable system which can simulate any quantum dynamics, both coherent and decoherent.Comment: Four pages, one figure (RevTeX 2.1), to appear in Physics Review Letter

    Distributed Graph Clustering using Modularity and Map Equation

    Full text link
    We study large-scale, distributed graph clustering. Given an undirected graph, our objective is to partition the nodes into disjoint sets called clusters. A cluster should contain many internal edges while being sparsely connected to other clusters. In the context of a social network, a cluster could be a group of friends. Modularity and map equation are established formalizations of this internally-dense-externally-sparse principle. We present two versions of a simple distributed algorithm to optimize both measures. They are based on Thrill, a distributed big data processing framework that implements an extended MapReduce model. The algorithms for the two measures, DSLM-Mod and DSLM-Map, differ only slightly. Adapting them for similar quality measures is straight-forward. We conduct an extensive experimental study on real-world graphs and on synthetic benchmark graphs with up to 68 billion edges. Our algorithms are fast while detecting clusterings similar to those detected by other sequential, parallel and distributed clustering algorithms. Compared to the distributed GossipMap algorithm, DSLM-Map needs less memory, is up to an order of magnitude faster and achieves better quality.Comment: 14 pages, 3 figures; v3: Camera ready for Euro-Par 2018, more details, more results; v2: extended experiments to include comparison with competing algorithms, shortened for submission to Euro-Par 201
    • …
    corecore